Forum Aski - Türkiye'nin En Eğlenceli Forumu
 

Go Back   Forum Aski - Türkiye'nin En Eğlenceli Forumu > Kültür - Sanat > Kültür - Sanat - Tarih > Genel Kültür
Kayıt ol Yardım Kimler Online Bugünki Mesajlar Arama

canlı casino siteleri canlı casino siteleri sagedatasecurity.com casino siteleri takipçi satın al
porno diyarbakır escort bayan antalya escort malatya escort

Genel Bilgiler

Genel Kültür kategorisinde açılmış olan Genel Bilgiler konusu , ...


Like Tree1Beğeni

Yeni Konu aç  Cevapla
 
LinkBack Seçenekler Arama Stil
Alt 28.09.2012, 03:37   #21 (permalink)
why so serious?

Kullanıcıların profil bilgileri misafirlere kapatılmıştır.
Standart Cevap: Genel Bilgiler

Nükleer Kaynaşma (Füzyon)


Nükleer kaynaşma (füzyon), parçalanmanın tersine çok hafif iki çekirdeği birleştirerek daha ağır bir çekirdek oluşturmak ve bu şekilde açığa çıkan bağ enerjisini kullanmaktır. Ama bunu denetim altında oluşturmak oldukça zor bir iştir. Çünkü çekirdekler pozitif elektrik yükü taşır ve birbirlerine yaklaştırmak istenildiğinde çok şiddetli bir şekilde birbirlerini iterler.

Bunların kaynaşmasını sağlamak için aralarındaki itme kuvvetini yenebilecek büyüklükte bir kuvvetin kullanılması gerekmektedir. Gereken bu kinetik enerji (hareket enerjisi), 20-30 milyon derecelik bir sıcaklığa eşdeğerdir.Bu olağanüstü bir sıcaklıktır ve kaynaşma tepkimesine girecek maddeyi taşıyacak hiçbir katı malzeme bu sıcaklığa dayanamaz. Yani bu birleşmeyi gerçekleştirecek bir düzenek yeryüzünde yoktur.

Füzyon tepkimeleri Güneş'te her an doğal olarak gerçekleşmektedir. Güneş'ten gelen ısı ve ışık, hidrojen çekirdeklerinin birleşerek helyuma dönüşmesi ve bu dönüşüm sırasında kaybolan maddenin yerine enerji ortaya çıkması sayesinde meydana gelmektedir. Güneş saniyede 564 milyon ton hidrojeni 560 milyon ton helyuma çevirir. Kalan 4 milyon ton gaz maddesi de enerjiye dönüşür.

Dünyamızdaki canlılık için son derece hayati öneme sahip güneş enerjisini meydana getiren bu müthiş olay milyonlarca yıldır, hiç durmadan devam etmektedir. Bu noktada, şöyle bir soru aklımıza gelebilir. Eğer Güneş'te, saniyede 4 milyon ton kadar büyük bir miktar madde kaybediliyorsa, Güneş'in sonu ne zaman gelecektir?

Güneş saniyede 4 milyon ton, dakikada ise 240 milyon ton madde kaybetmektedir. Güneş'in, 3 milyar yıldan beri bu hızla enerji ürettiğini varsayarsak, bu süre içinde kaybetmiş olduğu kütle 400.000 milyon kere milyon ton olacaktır ki, bu değer, yine de Güneş'in şimdiki toplam kütlesinin 5000�de biri kadardır. Bu miktar, 3 milyar yılda 5 kg�lık bir taş yığınından 1 gram kum eksilmesi gibidir. Bundan da anlaşılacağı gibi Güneş'in kütlesi öyle büyüktür ki, bu kütlenin tükenmesi çok uzun bir zaman gerektirir.

İnsanoğlu, Güneş'in yapısını ve içinde meydana gelen olayları ancak bu yüzyılda keşfetmiştir. Bundan önce kimsenin nükleer patlama, fisyon, füzyon türü olaylardan haberi dahi yoktu. Güneş'in nasıl enerji ürettiğini kimse bilmiyordu.

Ancak insanoğlu daha bunlardan habersizken Güneş, milyonlarca yıldır bu akıl almaz mekanizmasıyla yeryüzünün ve hayatın enerji kaynağı olmaya devam ediyordu. İşte bu noktada şu gerçeğe dikkat çekmek gerekir: Dünyamız muazzam büyüklükte bir kütleye sahip ve enerji kaynağı olan Güneş'ten o kadar hesaplı bir uzaklığa yerleştirilmiştir ki ne onun yakıcı, yok edici etkisine maruz kalır, ne de onun sağlayacağı faydalı enerjiden yoksun kalır. Aynı şekilde bu derece korkunç bir güce ve enerjiye sahip olan Güneş de başta insan olmak üzere yeryüzündeki tüm canlılığa en faydalı olacağı mesafe, güç ve büyüklükte yaratılmıştır.

Bu devasa kütle ve içinde gerçekleşen akıl almaz nükleer reaksiyonlar milyonlarca yıldır yeryüzüyle mükemmel bir uyum içinde ve en kontrollü biçimde faaliyetini sürdürmektedir. Bunun ne kadar olağanüstü, kontrollü ve dengeli bir sistem olduğunu anlamak için, insanın kendi ürettiği basit bir nükleer santrali bile kontrol altında tutmaktan aciz kaldığını hatırlamak yeterlidir. Örneğin, 1986 yılında Rusya�daki Çernobil reaktöründe meydana gelen nükleer kazayı hiçbir bilim adamı, hiçbir teknolojik alet engelleyememiştir.

Öyle ki bu nükleer kazanın etkisinin 30-40 yıl süreceği söylenmektedir. Bilim adamları bu etkiyi engellemek için bölgeyi dev kalınlıkta betonlarla kapattıkları halde, ilerleyen günlerde betonlardan sızıntı olduğu haberleri alınmıştır. Değil nükleer patlama, nükleer bir sızıntı bile insan yaşamı için son derece tehlikelidir ve bilim bu tehlike karşısında çaresiz kalmaktadır.

__________________

.
.
.
.






.
.
.


why so serious?
Ceysu isimli Üye şimdilik offline konumundadır Alıntı ile Cevapla
Alt 28.09.2012, 03:38   #22 (permalink)
why so serious?

Kullanıcıların profil bilgileri misafirlere kapatılmıştır.
Standart Cevap: Genel Bilgiler

Hidroelektrik Enerji


M.Ö. 3000-2000 yıllarından itibaren Mezopotamya ve Çin 'de, Mısır ve Anadolu 'da suyun potansiyel ve kinetik enerjisinden faydalanılmıştır. Buhar makinasının icadına kadar bir cismi hareket ettirmek için kuvvet kaynağı olarak sadece su ve rüzgardan yararlanılıyordu. Rüzgarın süreksiz olması nedeniyle daha çok su kullanılmıştır.

Suyun Potansiyel ve kinetik enerjisinden faydalanılarak çeşitli tipte hidroelektrik tesisler yapılabilir. Çöllerde ve sıcak ülkelerde suyun buharlaşmasından faydalanmak suretiyle yapılan depresyon tesisleri, gel-git olayından ve dalga enerjisinden faydalanılarak yapılanlarla akarsular üzerinde kurulan sistemler buna örnek verilebilir.

Depresyon Tesisleri

Denizden alçakta olan çöllerde veya denize kıyısı olan çok sıcak bölgelerde, yüzeyden suyun fazla buharlaşmasından yararlanmak amacıyla hidroelektrik tesisler yapılmaktadır. Çok sıcak bölgelerdeki uygun bir koy bir duvar aracılığıyla denizden ayrılır. Denizden ayrılan kısımda serbest su yüzeyinden buharlaşma sonucunda, buranın su seviyesi alçalır. İşte buharlaşan bu su miktarına eşit debi denizden alınarak hidroelektrik tesisi kurulur.

Çöllerde yapılan tesislerde ise çölün denizden alçak olan kesimlerinde bir tünel veya bir kanal ile deniz suyu taşınır. Çukur bölgede yapılan tesiste ise enerji üretilir. Çukur bölgede oluşan göl kesimden bir yıl içinde buharlaşan su miktarına eşit olan debi, denizden alındığı takdirde zaman içinde gölde kararlı bir seviye oluşur. Çukur bölgede oluşan bu gölün hacminin deniz suyundaki tuzu depolayacak kadar büyük olması gerekir.

Kattara Hidroelektrik projesi. Kattara Çölü Kahire'nin 300 km batısında ve Akdeniz seviyesinden 135 m alçaktadır. 80 km uzunluğundaki bir tünel vasıtasıyla 600 m³/sn lik deniz suyu bu çukura aktarılacaktır. Oluşacak göl ham biriken tuzları hem de 60 m yüksekliğindeki 12000 m²'lik bir alana sahip gölün su yüzeyinde büyük miktarda buharlaşma gerçekleşecektir. Yılda yaklaşık 2 m kalınlığında su buharlaşırsa, yılda toplam 24 milyar m³ su buharlaşacaktır. Bu da ~761 m³/s debiye karşılık gelir. Fırat nehrinin debisi ise 600 m³/s 'dır. Tesisin kur gücü 1200MW'dır.

Gel-Git Hidroelektrik Tesisleri

Açık denizlerde meydana gelen gel-git olaylarından yararlanılarak elektrik enerjisi elde edilmesi için kurulan tesislerdir. Yükselen deniz suyu bir nehrin ağzında yapılan hazneye veya bir koya doldurulur. Boşalırken, dolarken veya her iki yönde çalışan tek ve çift hazneli gelgit tesisleri yapılmıştır.

24 saat içinde, 20 dk süre ile deniz iki defa kabarır ve alçalır. Dolarken ve boşalırken aynı türbin çalışabilir. İki taraf arası seviye farkı 3 m olunca türbinler durur. Daha sonra tekrar kapaklar açılarak deniz suyu doldurulur ve boşaltılır. Bu tesislerin en büyüğü Fransa'da Atlantik sahilindeki Rance Tesisidir. Bu santralde her biri 10 MW gücünde 24 türbin-jeneratör grubu vardır. Tesisi çalıştırmakta sadece bir kişi görevli çünkü tesis tam otomatik olarak çalışmaktadır. Tesis 240 MW gücündedir.

Dalga Enerjisinden Faydalanılarak Enerji Üreten Tesisler

Bu tesisler henüz uygulama safhasına girmemiştir. Dalga enerjisinin de süreksiz olması bu tür tesislerin faaliyet sürelerini kısıtlamaktadır. İstanbul Boğazındaki akıntıdan enerji elde edilmesi ise mümkün değildir. Çünkü tesisin masrafları üretimle elde edilecek gelirin çok çok üstündedir. Ayrıca tesisin kurulabilmesi için Boğaz deniz trafiğine kapatılacaktır ve üretilecek enerji ise yalnızca 5 MW gücündedir. Yani konvansiyonel olmayan tesisler ancak belirli yerlerde ve belirli koşullar altında yapılabilmektedir.

Akarsular Üzerinde Kurulan Hidroelektrik Tesisleri

Bu tür santraller iki ana bölüme ayrılır. Barajsız hidroelektrik santralleri, nehir santralleri veya çevirmeli hidroelektrik tesisleri.

Barajsız Hidroelektrik Tesisleri

Akarsu, bağlama adı verilen bir sistem aracılığıyla kabartılarak su alınır. Alınan su bir tünel veya kanal yardımıyla az bir eğim oluşturacak şekilde, aynı veya başka bir akarsu yatağına bırakılır. Böylece seviye farkından yararlanılarak elektrik enerjisi üretimi sağlanır. Akarsu üzerine yapılan bağlama yardımı ile kabartılan suyun, seviye farkından yararlanarak kanalsız veya tünelsiz tesisler yapılmaktadır.

Barajlı Hidroelektrik Tesisler

Akarsu üzerinde bir baraj yardımı ile mevsimlik, yıllık veya çok yıllık hazneler. Elektrik enerjisi üretimi ihtiyaca göre ayarlanarak, pik saatlerindeki ihtiyaç kolayca karşılanır. Yedek türbinler yardımı ile yağışlı yıllarda güvenilir enerjinin üstünde ikincil enerji üretilebilir ve haznenin büyüklüğüne göre kurak mevsimlerde enerji ihtiyacı karşılanabilir. Bunlara karşın barajların önemli olumsuzlukları da göz ardı edilmemelidir.

__________________

.
.
.
.






.
.
.


why so serious?
Ceysu isimli Üye şimdilik offline konumundadır Alıntı ile Cevapla
Alt 28.09.2012, 03:38   #23 (permalink)
why so serious?

Kullanıcıların profil bilgileri misafirlere kapatılmıştır.
Standart Cevap: Genel Bilgiler

Hücre


Canlıların temel yapı ve işlevsel birimi hücredir. Bütün canlılar bir ya da daha fazla hücreden meydana gelmiştir. Kalıtım materyali hücrede bulunur. Modern Hücre Teorisi'ne göre yeni hücreler varolan hücrelerin çoğalması ile oluşur.

Bu teoriyi şöyle açıklayabiliriz: Canlılarda gördüğümüz her türlü yapısal ve işlevsel faaliyeti hücrede görebiliriz. Yani bir hücre büyüme, boşaltım, üreme, hareket gibi, canlılığa özel işlevleri tek başına yerine getirebilir.

Bütün canlılar hücrelerin biraraya gelmesiyle oluşmuştur. Tek bir hücreden meydana gelen amip, terliksi hayvan ve milyarlarca hücreden meydana gelen insan. Canlılığın en büyük özelliklerinden birisi hücresel yapıya sahip olmalarıdır.

Her türlü özelliğimizin oluşmasını sağlayan kromozomlar hücrede bulunur. Kromozomlar, prokaryot (ilkel çekirdekli) canlılarda stoplazma içerisine dağılmış olarak bulunurken, ökaryot (gerçek çekirdekli) canlılarda çift kat zarla çevrili çekirdek organelinin içerisindedir. Kromozomlar sayesinde ana-babadaki özellikler, genç hücrelere ve tabii ki yavrularına geçer.

Anorganik ve organik evrim süreci dışında hiçbir hücre, durduk yerde ortaya çıkmaz. Ancak varolan hücrelerin mitoz veya mayoz bölünme geçirmesiyle oluşur. Mitoz bölünme, bir hücreden aynı özellikleri taşıyan iki yavru hücrenin meydana gelmesidir. Büyüme ve gelişme sırasında vücut hücrelerimiz bolca mitoz bölünme geçirerek çoğalırlar.

Mayoz bölünme ise, bir hücreden dört yavru hücrenin meydana gelmesidir. Üreme hücrelerinde görülen bir bölünme şeklidir. Canlıların çeşitlenmesine ve farklı özellikler kazanmasına olanak sağlar.

Hücrenin Bölümleri

Hücre Zarı

Singer-Nicholson adlı iki bilim adamı tarafından ortaya atılan "Akıcı-Mozaik Zar Modeli" ile açıklanır. Bu modele göre hücre zarı, tek katlı lipid tabakasından meydana gelmiş, karbonhidrat ve protein molekülleri lipid tabakasına gömülü durumdadır. Lipid tabakası sürekli hareket halindedir.

Stoplazma

Hücre zarı ile çekirdek arasını dolduran canlı sıvıdır. Büyük bir kısmı sudur. Içerisinde organel denilen çeşitli görevleri üstlenmiş ve özelleşmiş yapılar bulunmaktadır.

Endoplazmik Retikulum

Çekirdek zarı ile stoplazma ya da hücre zarı arasında uzanan iletimle görevli kanal ve borucuklar sistemidir.

Golgi Aygıtı

Hücrenin bazalında bulunan iç içe geçmiş tabak görünümünde zar sistemidir. Yağ sentezi ve lizozomların paketlenmesinde görevlidir.

Lizozom

Tek katlı zarla çevrili, içerisinde sindirim enzimleri bulunduran organeldir.

Mitokondri

Hücrenin enerji santralidir. Oksijenli solunumun gerçekleştiği yerdir.

Kloroplast

Sadece bitki hücrelerinde bulunan bu organel, fotosentezin yani besin üretiminin gerçekleştiği yerdir.

Sentrozom

Bu organel sadece hayvan hücrelerinde bulunur ve bölünme esnasında kromozomların kutuplara taşınması görevini üstlenmiştir.

Çekirdek

Hücrenin en önemli organeli ve yöneticisi konumundadır. Dış tarafı çift kat zarla çevrili, içerisi ise karyoplazma denilen sıvı madde ile doludur. Ayrıca kromozomlar ve çekirdekçik de burada bulunur.

__________________

.
.
.
.






.
.
.


why so serious?
Ceysu isimli Üye şimdilik offline konumundadır Alıntı ile Cevapla
Alt 28.09.2012, 03:38   #24 (permalink)
why so serious?

Kullanıcıların profil bilgileri misafirlere kapatılmıştır.
Standart Cevap: Genel Bilgiler

Işığın Madde Haline Geçişi


Enerji ile maddenin birbirlerine dönüşmesi E=mc2 eşitliğine göre olmaktadır. (E=enerji, m=kütle, c=ışık hızı). Einstein�ın bulduğu bu formül bu yüzyılın başından beri bilinmektedir. Maddenin ışık enerjisi şekline geçişini çok iyi biliriz.

Yıldızların parlaması, termonükleer bombanın patlaması vb. Amerikalı fizikçilerden oluşan bir ekip dünyada ilk defa bu olayın tersini, yani ışığın vakum içinde maddeye dönüşmesini kanıtladı. Bu buluş Stanford Doğrusal Parçacık Hızlandırıcı�sında yapıldı.

Kuramsal fizikçi Breit ve Wheeler daha 1934�de iki foton çarpışınca bir elektron�la bir pozitron doğabileceğini ileri sürmüştü. Fakat, bu olayın gerçekleşebilmesi için bu iki fotonun enerjilerinin çok yüksek olması gerekir; örneğin sıradan lazer ışınlarının fotonları maddeye çevrilemez. Bu bakımdan çok ustaca bir deney hazırlanması gerekiyordu.

Çok yüksek enerjili (46,6 GeV) bir elektron demetiyle çok odaklaşmış bir lazer ışını çarpıştırıldı. Elektronlarla çarpıştıktan sonra bazı lazer fotonları gittikleri yönün tam tersinde gitmeye başladılar ve bu sırada son derece büyük bir enerji kazandılar. Bu yüksek enerjili fotonlar, başlangıçtaki lazer fotonlarıyla çarpıştıklarında bir elektron-pozitron çifti oluşturdular.

__________________

.
.
.
.






.
.
.


why so serious?
Ceysu isimli Üye şimdilik offline konumundadır Alıntı ile Cevapla
Alt 28.09.2012, 03:38   #25 (permalink)
why so serious?

Kullanıcıların profil bilgileri misafirlere kapatılmıştır.
Standart Cevap: Genel Bilgiler

Işık Dalgaları


Galile, ışık hızını saptanması problemini formülleştirdi; ama çözmedi. Bir problemin formüllleştirilmesi, çoğu zaman, problemin yalnız bir matematik ya da deney ustalığı sorunu olan çözümünden daha önemlidir. Yeni sorular, yeni olanaklar ortaya koymak, eski problemlere yeni bir açıdan bakmak, yaratıcı hayalgücünü gerektirir ve bilimde gerçek ileremeye damgasını vurur.

Galile�nin İki Yeni Bilim�inde, öğretmen ile öğrencileri arasında, ışık hızı üzerine şöyle bir konuşma geçer: "SAGREDO: Peki ama, bu ışık çabukluğunun ne çeşit ve ne kadar büyük bir çabukluk olduğunu düşünmeliyiz? Ani ya da pek birdenbire midir, yoksa öbür hareketler gibi o da zaman mı gerektirmektedir? Bunu deneyle saptayabilir miyiz?

"SIMPLICO: Günlük yaşantı, ışığın yayılmasının birdenbire olduğunu göstermektedir; çünkü çok uzağımızda ateşlenen bir topun önce alevini görürüz ve bu, hiç zaman almaz; oysa topun sesi ancak oldukça önemli bir zaman aralığından sonra kulağımıza ulaşır.

"SAGREDO: Evet ama Simplico, kimsenin yadırgamadığı bu yaşantıdan benim çıkarabildiğim tek şey, bize ulaşan sesin ışıktan daha yavaş yol aldığıdır; bu, bana ışığın gelişinin apansız olup olmadığını ya da son derece çabuk geliyorsa, yine de zaman alıp almadığını öğretmiyor.

"SALVIATI: Bunun ve buna benzer başka küçük gözlemlerin pek az kanıtlayıcı olması, birinde aydınlanmamın, yani ışığın yayılmasının, gerçekten birdenbire olup olmadığını kesinlikle saptamak için bir yöntem düşünmeme yol açtı."

Salviati�nin önerdiği deney tekniği ile, yani Galile zamanında ışığın hızını, anlatılan şekilde ölçmek olanağı pek azdı. Süredurum İlkesi, enerjinin korunumu yasası, yalnızca önceden çok iyi bilenen deneyler üzerinde yeni ve özgün bir biçimde düşünmekle bulunmuştur.

Galilei�nin, yaptığı deneyin tek kişi ile daha kolay ve eksiksiz yapılabileceğini görmemiş olmasının insanı şaşırttığını söyleyebiliriz. Belirli bir uzaklıkta duran arkadaşının yerine bir ayna koyabilirdi ve ayna, işareti alır almaz kendiliğinden geri gönderirdi.

Işık hızını, ilk olarak ve yalnız yeryüzündeki olanaklardan yararlanarak yaptığı deneylerle saptayan Fizeau, aşağı yukarı iki yüz elli yıl sonra, işte bu ilkeyi kullandı. Roemer, ışık hızını daha önce, ama daha az tam olarak, gökbilimsel gözlemlerle saptamıştı.

Aşırı bir yük olduğu için, ışık hızının, ancak Yer ile Güneş Sistemi'nin diğer gezegenleri arasındaki uzaklıklarla bir tutulabilen uzaklıklar kullanılarak ya da çok geliştirilmiş bir deney tekniği ile ölçülebileceği bellidir. Birinci yöntem, Roemer�inki, ikincisi Fizeau�nunki idi.

Bu ilk deneylerin yapıldığı günlerden beri, ışık hızını gösteren o çok önemli sayı, kesinliği gittikçe artarak birçok kez saptandı. Yüzyılımızda, Michelson, bu amaçla pek ince bir teknik geliştirdi. Bu deneylerin sonuçları kısaca şöyle özetlenebilir: Işığın boşluktaki hızı, yaklaşık olarak, saniyede 300.000 kilometredir (saniyede 186.000 mil).

1675'te Danimarkalı Christensen Roemer (1644-1710) ışığın hızını ölçtü.

1678'de yine Danimarkalı Christian Huygens ise (1629-1695) Işığın Dalga Kuramı'nı ortaya attı.

1781'de Alman William Herschell (1738-1822), 124 cm'lik aynalı teleskobuyla Uranüs'ü keşfetti. Bu, uzak mesafede keşfedilen ilk gezegendi. Yakındakiler binlerce yıldan beri zaten biliniyordu.

1783'te içinde bir insan bulunan ilk balon uçuruldu.

Astronomiye büyük bir tutkuyla bağlı olan Edmund Halley (1656-1742), 21 yaşındayken öğrenim gördüğü Oxford'dan ayrılıp St. Helena'ya gitmişti; kuyruklu yıldızlarla ilgili gözlemler yapmıştı. 1682'de gördüğü, bugün de kendi adıyla anılan yıldızın 1758'de yeniden görülebileceğini ileri sürmüştü. Halley'in ölümünden 16 yıl sonra, bu yıldızın görülmesi, Newton'un en inatçı karşıtlarını bile ikna etmeye yetecekti.

Evrensel Kütle Çekimi Yasası, Neptün'ün bulunmasıyla, parlak bir şekilde doğrulanmıştı. Astronomlar, Uranüs'ün, Kütle Çekim Yasalarının öngördüğü yörüngesinden, arasıra kaydığını çoktandır gözlüyordu. Uranüs, kimi zaman yavaşlıyor, kimi zaman da sanki görünmez bir kuvvetin etkisiyle hızlanıyordu.

Rus astronom Leksel, 18. yüzyılın sonunda Uranus'ün hareketlerine, ötesinde bulunan ve bilinmeyen bir gezegenin neden olacağını ileri sürdü. 1846'da Fransız matematikçi Leverrier, bu yeni Gezegen'in gökteki konumunu hesapladı ve sonra astronomlar o Gezegen'i gözlediler. Kütle Çekim Kuramı'nın gözlemlere tam uyuşmayan bir olayı da Merkür'ün günberisindeki (Güneş'e en yakın noktalar) sapmaydı.

Bu olgu uzun süre doğanın açıklanamaz bir kaprisiymiş gibi geldi. O'nun açıklanması, bilimde bir devrim gerektirdi ve bunu da büyük bilim adamı Albert Einstein başaracaktı.

__________________

.
.
.
.






.
.
.


why so serious?
Ceysu isimli Üye şimdilik offline konumundadır Alıntı ile Cevapla
Alt 28.09.2012, 03:39   #26 (permalink)
why so serious?

Kullanıcıların profil bilgileri misafirlere kapatılmıştır.
Standart Cevap: Genel Bilgiler

Işık Hızı


Laboratuvar koşullarında ışığın hızı saniyede 17 metreye düşürüldü. Arabalar artık ışıktan hızlı gidebilecek. Daha doğrusu, burada söz konusu olan son derece özel bir araba. Nature Dergisi'nin 18 Şubat 1999 tarihli sayısında, yalnızca arabaların değil, bisikletlerin de nasıl ışıktan daha hızlı gidebileceği anlatılıyor.

Genç Einstein, bir tramvayda ofisine doğru gittiği sırada Görelilik Kuramı'nı düşlerken, ışık hızıyla yolculuk etmenin nasıl bir şey olacağını merak etmekteydi. Ancak, o günlerde, herhangi bir tramvay, bisikletci ya da arabanın, ışığın boşluktaki hızına, yani saniyede 300 milyon metrelik hıza ulaşması olanaksızdı. Dolayısıyla Einstein, bu hızı, herhangi bir nesnenin aşamayacağı, üst hız sınırı olarak belirledi.

Burada anahtar sözcük vakum,yani maddesiz ortamdır. Madde, ışığı soğurarak, saçılımına yol açar ve onu yavaşlatır. Işık huzmelerinin su, cam lensler ya da prizmadan sapması, yani kırılma, ışığın bu saydam ortamlarca yavaşlatılmasının doğurduğu bir yan etkidir.

Bununla birlikte, olağan bir kırılma, ışığın boşlukta yolalırken ulaştığı hızın yarısından fazla olmaz. Kırılıma neden olan ortamın doğası gereği bir kırılma sınırı söz konusudur. Kırılma ışığı yavaşlattığından, ortamın, ışık içinden geçerken onu soğurma olanağı doğar. Dolayısıyla da, içinden geçen ışığı çok yavaşlatan maddeler donuk, yani opak hale gelerek, ışığı tümüyle engellerler.

Fizikçiler, soğurma olmaksızın yüksek oranda kırılma sağlayarak, donuklaşması gereken maddelerin saydam olarak korunduğu ortamlar yaratmak yoluyla, artık bu engeli aşmış bulunuyorlar. Bu amaçla da lazerlerin yardımına başvurulmuş.

Kırılım ortamı ise, lazerler yardımıyla hazırlanan, aşırı-soğuk atom bulutlarından oluşuyor.Bu sistem içinden geçen ışık, atomlarla değil de, atom-artı-lazer sistemiyle etkileşime girmekte ve ilginç etkilere yol açmakta. Bu etkilerden biri, 'elektromanyetik yolla sağlanan saydamlık'adı verilen bir olay nedeniyle, soğurmanın yokedilmesi.

Lazerle hazırlanmış kurşun atomları kullanan Stanford Üniversitesi bilim adamları, bir ışık pulsunu, ışığın boşluktaki hızının 165'te birine, yani saniyede 180.000 metreye yavaşlatmışlar. Bu bile, en iyi bisikletçinin ulaşamayacağı bir hız.

Cambridge, Rowland Bilim Enstitüsü'nden Lene Vestergaard Hauve arkadaşları ise, Nature'da yer alan araştırmalarında, lazerle hazırlanmış atom bulutlarının ışığı, boşluktaki hızının nasıl 20 milyonda birine, yani saniyede 17 metreye yavaşlattığını açıklıyorlar.

Dünya rekortmeni bisiklet yarışçısı Bruce Bursford, özel bir vites sistemi taşıyan özel bir bisikletle, saniyede 92 metrelik inanılmaz bir hıza ulaşmış kişi olarak, artık ışık hızında bisiklete binebilecek.

Hau ve arkadaşları, bu sonuca, mutlak sıfırın (eksi 273°C) hemen üstünde bir sıcaklığa soğutulmuş sodyum atomlarından oluşma bir gazla ulaşmışlar. Soğutma işlemi bile, ısıl, yani termik etkileri azaltıyor ve ışığın yavaşlamasında rol oynuyor. Ancak, aşırı düşük sıcaklıklar, ayrıca ek bir etki doğurmakta.

Belli bir sıcaklık altında, mutlak sıfırın, derecenin 435 milyarda biri kadar üzerinde, atomlar, her biri eşit kuantum durumunu benimsemeye eğilim gösterdikleri, maddeni Bose- Einstein Kondensat (BEC) adı verilen özel bir haline geçiş yapıyorlar. Bir bakıma, BEC'teki tüm atomlar, sanki 'aynı'atommuş gibi davranıyorlar.

BEC'ler, sıradan atomik gazların en soğuklarından bile daha yoğundur. Düşük sıcaklık ve atomların kuantum koheransı davranışları, ışık pulslarının BEC içinde, saniyede 17 metrelik düşük bir hıza yavaşlamalarına neden oluyor.

Bir ışık pulsunun hızı, bir Bose- Einstein alkoli atom kondansatı içinde optik olarak endüklenmiş kuantum girişimi aracılığıyla, neredeyse iyi bir bisikletçinin bisiklet sürme hızına indirgenmiş bulunuyor.

Işık pulsu, serbest boşluktaki hızına oranla, yaklaşık 20 milyona eşdeğer bir çarpan kadar yavaşlatıldı. Ortam, ayrıca, bugüne kadar gözlenen en büyük optik doğrusallıksızlığı (yoğunluğa bağımlı kırılım indisi biçiminde) sunmakta.

Bu teknik sayesinde, tek bir foton düzeyindeki düzlemsel olmayan optikler kadar, evreye duyarlı, sınırlı madde dalgası uyarılmaları da olanaklı hale gelebilecek. Kapakta, bu yarışın başrol oyuncuları olan, deneydeki vakum pencerelerinin çerçeveleri görülüyor.

__________________

.
.
.
.






.
.
.


why so serious?
Ceysu isimli Üye şimdilik offline konumundadır Alıntı ile Cevapla
Alt 28.09.2012, 03:39   #27 (permalink)
why so serious?

Kullanıcıların profil bilgileri misafirlere kapatılmıştır.
Standart Cevap: Genel Bilgiler

Jeotermal Enerji


Jeotermal enerji, Dünya'nın ısısından elde edilen enerjidir. Jeotermal sözcüğü "yer" ve "ısı" anlamındaki Yunanca iki sözcükten üretilmiştir. Bilim adamları, jeotermal ısının nereden kaynaklandığı, yeryüzüne çıkan buharın nasıl oluştuğu konusunda henüz tam bir görüş birliğine varamamışlardır. Büyük bir olasılıkla bu ısının kaynağı , Dünya'nın derinliklerindeki "magma" denilen erimiş kayaç kütlesidir.

Yüzeye püsküren buharın da, yüzeyden derinlere sızan yağmur sularının, bu kızgın magma bölgesinde ısınıp buharlaşması sonucunda oluştuğu sanılmaktadır. Bu ısıdan, İzlanda ve Japonya'da olduğu gibi, evlerin, hamamların ve seraların ısıtılmasında yararlanılabilir. Elektrik enerjisi üretiminde de, üreteçlere bağlı buhar türbinlerinin çalıştırılmasıyla jeotermal enerji kullanılabilir.

İlk jeotermal enerji santralı 1931'de İtalya'daki Larderello'da kuruldu. Bugün Larderello'da toplam gücü 351 megawatt olan ve yaklaşık 600 bin nüfuslu bir kenti beslemeye yeterli elektrik üreten bir grup jeotermal enerji santralı bulunmaktadır.

Ucuz enerji çağından pahalı enerji çağına girilirken ömrü son derece kısıtlı olan konvansiyonel enerji kaynaklarının, bir gün tükenebileceği düşünülmeye başlanmıştır. Bu nedenle, hızla artan nüfusun ve teknolojik yeniliklere bağlı olarak gelişen endüstrinin enerji gereksinimi karşısında, konvansiyonel enerji kaynaklarının yerine geçebilecek, yeni ve yenilenebilir doğal kaynakların araştırılması bulunması ve bunlardan yararlanılması konusunda büyük bir arayış içine girilmiştir.

Dünyadaki enerji kaynakları fosil kaynaklar (kömür, petrol, doğal gaz, turba, petrollü, kaynaklar, vb.) yenilenebilir kaynaklar (hidrolik, biyomas, jeotermal, jeotermal gradyan, rüzgar, gelgit, dalga, vb.) olmak üzere iki bölüme ayrılabilir. Bunlardan yenilenebilir kaynaklar grubuna giren Jeotermal Enerji, önemli bir yer tutmaktadır.

Yerkabuğu içerisinde hazne kayalarda bulunan, basınç altında aşırı derecede ısınmış suların enerjisidir. Ekonomik önemdeki jeotermal enerji birikimi, 40°C-380°C arasında olup, 3000 m 'ye kadar olan derinliklerde geçirimsiz kayalar altında yer alan, geçirimli hazne kayalar içinde bulunmaktadır. Şimdiye kadar üç çeşit jeotermal sistemin varlığı saptanmıştır. Sıcak kuru kaya sistemi, sıcak su sistemi, kuru bahar sistemi.

Sıcak Su Sistemi

Yeryüzünde sıcak su esaslı sistemler Buhar esaslı sistemlerden yirmi kat daha fazla bulunmaktadır. Sıcak su sisteminde, derindeki hazne kaya içerisinde, basınç altında, yüksek sıcaklıkta, erimiş kimyasal madde bakımından çok zengin, farklı kimyasal özelliklerde sular bulunmaktadır. Bu tür sistemlerden sondajlarla yeryüzüne çıkarılan sıcak su+buhar karışımından elde edilen buhardan, elektrik enerjisi üretilmekte, buharı alınmış sıcak su ise atılmaktadır.

Kuru Bahar Sistemi

Buhar esaslı sistemler, sıcak su esaslı sistemlerden farklı olarak, çok fazla ısınmış, nem miktarı az, sıcaklığı yüksek buhar üretirler. Bu tür buhar, bir enerji kaynağı olarak doğrudan jeotermal santrallere gönderilerek elektrik enerjisine dönüştürülmektedir. Bir bakıma bunlar yerkabuğu üzerinde oluşmuş, birer doğal nükleer reaktör olarak kabul edilir.

Sıcak Kuru Kaya Sistemleri

Yerküremizde özellikle genç, aktif volkanik kuşaklarda, jeotermal gradyanın çok yüksek olduğu bölgelerde, sıcak su içermeyen yüksek sıcaklığa sahip kızgın, kuru kayalar bulunmaktadır. Bu tür sistemlere soğuk su basılarak sıcak su+ buhar karışımı alınmakta ve bu, bir enerji kaynağı olarak kullanılmaktadır.

__________________

.
.
.
.






.
.
.


why so serious?
Ceysu isimli Üye şimdilik offline konumundadır Alıntı ile Cevapla
Alt 28.09.2012, 03:39   #28 (permalink)
why so serious?

Kullanıcıların profil bilgileri misafirlere kapatılmıştır.
Standart Cevap: Genel Bilgiler

Kuarklar


Günümüzden 20 yıl öncesine kadar atomları oluşturan en küçük parçacıkların protonlar ve nötronlar oldukları sanılıyordu. Ancak çok yakın bir tarihte, atomun içinde bu parçacıkları oluşturan çok daha küçük parçacıkların var olduğu keşfedildi.

Bu buluştan sonra, atomun içindeki "alt parçacıkları" ve onların kendilerine has hareketlerini incelemek üzere "Parçacık Fiziği" isimli bir fizik dalı ortaya çıkmıştır. Parçacık fiziğinin yaptığı araştırmalar şu gerçeği açığa çıkarmıştır: Atomu oluşturan proton ve nötronlar da aslında "kuark" adı verilen daha alt parçacıklardan oluşmaktadırlar. İnsan aklının kavrama sınırlarını aşan küçüklükteki protonu oluşturan kuarkların boyutu ise daha da hayret vericidir: 10-18 (0,000000000000000001) metre.

Protonun içinde bulunan kuarklar hiçbir şekilde birbirlerinden çok fazla uzaklaştırılamazlar; çünkü, çekirdeğin içindeki parçacıkları bir arada tutmaya yarayan "güçlü nükleer kuvvet" burada da etki etmektedir. Bu kuvvet, kuarklar arasında adeta bir lastik bant gibi görev yapar.

Kuarkların arası açıldıkça bu kuvvet büyür ve iki kuark birbirinden en fazla 1 metrenin katrilyonda biri kadar uzaklaşabilir. Kuarklar arasındaki bu lastik bağlar, güçlü nükleer kuvveti taşıyan gluonlar sayesinde oluşur. Kuarklarla gluonlar birbirleriyle son derece güçlü bir iletişim halindedir. Ancak, bilim adamları bu iletişimin nasıl gerçekleştiğini halen keşfedememişlerdir.

__________________

.
.
.
.






.
.
.


why so serious?
Ceysu isimli Üye şimdilik offline konumundadır Alıntı ile Cevapla
Alt 28.09.2012, 03:40   #29 (permalink)
why so serious?

Kullanıcıların profil bilgileri misafirlere kapatılmıştır.
Standart Cevap: Genel Bilgiler

Kütlesel Çekim


Yukarı atılan bir cisim, bir süre sonra döner ve yere düşer. Irmaklar hep yukarıdan aşağıya doğru akar. Bunun açıklamasını "yerçekimi" olarak yaparız. Bu, tüm kütleli nesnelerde, gezegenlerde ve yıldızda varolan bir kuvvettir ve ona "kütle çekimi" diyoruz.

Bu çekim, en yoğun cisimeleri ve "boşluğu" eşit oranda donatır. Ondan korunmanın ya da onu etkilemenin hiçbir yolu yok. Uzaklıkla azalır; ama hiçbir şekilde kaybolmaz. Atmosferi Yerküre'nin çevresinde tutan kuvvet ya da bizim Evren boşluğuna uçup gitmemizi engelleyen kuvvet, Dünya'nın uyguladığı kütle çekimi kuvvetidir.

Bir yapma uyduyu, Dünya yörüngesine yerleştirmek için gerekli hız, saniyede 8 kilometreden (8 km/s) az değildir. Dünya'nın çekiminden kurtulmak ve onu temelli terketmek için saniyede 11.2 kilometre hız yapmak gerekir. Güneş'in kütle çekimi daha büyüktür. Çünkü Güneş'in kütlesi, Dünya'nınkinin 400 bin katıdır. Güneş'in kütlesel çekimini aşabilmek için saniyede 16.7 kilometrelik hız gerekir.

Kuşkusuz insanoğlu çok eski zamanlarda da kütle çekimini sezmiş ve onu hesaba katmış olmalı. İlginçtir, bilinen bu eski kuvvet, çağlar boyu açıklanamamış olarak kaldı. Kütle çekimi için bilimsel bir kuram geliştiren ve bunu Evren'i kapsayacak kadar genişleten, büyük İngiliz bilimcisi Sir Isaac Newton (1642-1727) idi.

Masa üzerindeki bir kitabı inceleyelim. Kitaba herhangi bir etki olmadıkça kitap, masa üzerinde hareketsiz kalır. Şimdi, kitabı yatay doğrultuda sürtünme kuvvetini yenecek büyüklükte bir kuvvetle sağa doğru itelim. Sürtünme kuvveti kitapla masa arasında varolan bir kuvvettir.

Kitaba uygulanan kuvvet, sürtünme kuvvetine eşit ve zıt yönlü ise kitap sabit bir hızla hareket edebilecektir. Uygulanan kuvvet sürtünme kuvvetinden büyükse kitap ivmelenir. Uygulanan kuvvet ortadan kalkarsa sürtünme kuvvetinin etkisi ile kısa bir süre hareket ettikten sonra durur (negatif ivmelenme sonucu).

Şimdi, kitabın karşıdan karşıya kaygan hale getirilmiş yüzeyde itildiğini düşünelim. Kitap, yine duracak fakat önceki durumda olduğu gibi çabucak durmayacaktır. Döşemeyi, sürtünmeyi tamamen ortadan kaldıracak kadar cilalar, parlatırsanız kitap, bir defa harekete geçtikten sonra, karşı duvara çarpıncaya kadar aynı hızla hareket edecektir.

Galileo, cisimler hareket halinde iken, durmaya ve hızlanmaya direnme (eylemsizlik) tabitanıa sahip olduğu sonucuna da varmıştı. Bu yeni yaklaşım daha sonra Newton tarafından formülleştirilerek, kendi adıyla anılan Newton'un "Birinci Hareket Yasası" olarak tanımış ve şöyle ifade edilmiştir: "Bir cisme bir dış kuvvet (bileşke kuvvet) etki etmedikçe, cisim durgun ise durgun kalacak, hareketli ise sabit hızla doğrusal hareketine devam edecektir."

Daha basit bir anlatımla, bir cisme etki eden net kuvvet sıfırsa ivmesi de sıfırdır. Newton'un birinci yasası, bir cisme etki eden dış kuvvetlerin bileşkesi sıfır olduğu zaman cismin davranışındaki değişmeleri inceler. Bir cisim üzerine sıfırdan farklı bir bileşke kuvvet etki ettiği zaman neler olur? Bu sorunun yanıtını Newton'un ikinci yasası verir.

Çok düzgün, cilalı, parlatılmış yatay bir yüzey üzerinde, sürtünme kuvvetini önemsemeyerek bir buz kalıbını ittiğinizi düşünün. Buz kalıbı üzerinde yatay bir F kuvveti uygularsanız, kalıp "a" ivmesi ile hareket edecektir. Kuvveti iki katına çıkarırsanız ivme de iki katına çıkacaktır. Bu tür gözlemlerden bir cismin ivmesinin, ona etkiyen bileşke kuvvet ile doğru orantılı olduğu sonucuna varırız.

Peki bileşke kuvveti aynı tutarken cismin kütlesini iki katına çakrsak ne olur? İvme yarısına düşer; üç katına çıkarılırsa üçte birine düşer. Bu gözleme göre, bir cismin ivmesinin kütlesi ile ters orantılıdır. Buna göre Newton'un ikinci yasası şöyle anlatılabilir: "Bir cismin ivmesi, ona etki eden kuvvetle doğru orantılı, kütle ile ters orantılıdır."

Elbette ki gezegenler, Kepler Yasalarına göre hareket ediyordu. Ama neden gezegenler değişik ve üstelik düzgün bir hızla hareket etmiyordu? Gezegenlerin gökyüzünde hareket etmeleri için onları "iten" bir gücün olması gerektiği düşünülüyordu. Ama bu güç neydi? Newton'un yaşadığı dönemde hiç olmazsa birçok insan astrolojiyi ciddiye almıyordu; yani gezegenleri meleklerin itmediği kesindi. Newton, Kepler'in formüllerini çıkarmak için kütlesel çekim (gravitasyonal alan) yasasını kullanmştı.

Newton, Galileo'nun sarkaç deneylerini inceledi ve buradan boşlukta serbestçe dolaşan gezegenlere etkiyen bir çekimin bulunması gerektiği sonucuna kolayca vardı. Çünkü o, düşünür ve matematikçiydi. Gezegenler, eliptik yörüngeler izliyordu. Bu yörüngeler üzerinde dolanırken Güneş'e daha yakın oldukları yerlerde hızları artıyor, sonra Güneş'ten uzaklaştıkça hızları azalıyordu.

Newton, kuvvet bilinirse, bunu kütle denen büyüklüğe bölünce ivmenin bulunabileceğini varsaymıştır. Burada kütle, harekete karşı koymanın bir çeşiti olarak görünür: kütlesi bir başka arabanınkinin iki katı olan çok yüklü bir araba, aynı beygirin etkisi altında birincinin yarısı kadar bir ivme kazanır.

Kısacası kütle, hareket edenin eylemsizliğini bildirir ve bu yüzden ona "eylemsizlik kütlesi" adı verilir. Buna göre her cismin, olanaklı bütün kuvvetlere karşı gösterebileceği tepkiyi belirleyen özel bir eylemsizliği vardır. Bunu saptadıktan sonra geriye kuvvet denen şeyin ne olduğunu anlamak kalıyordu.

Newton kuvveti şöyle tanımlaıyor: Kuvvet, cisimleri hareketsizlik durumu ya da düzgün hareketei değiştirecek biçimde etkileyen bir eylemdir. merkezcil bir kuvvet, cisimleri bir merkeze ya da belli bir noktaya doğru çeker ya da çekilme eğilimi içinde bulunmalarına yolaçar.

Böylece Dünya, Ay'etkilediği zaman ona bir kuvvet uyguluyordu. Ay, Dünya'dan ne kadar uzaksa bu kuvvet de o kadar zayıftı. Daha kesin olarak söylenirse Newton, uzaklık iki kat olunca, kuvvetin ilk değerinin dörtte birine indiğini varsaydı. İki madde birbirlerini kütllelerinin çarpımı ile doğru. aralarındaki uzaklığın karesi ile ters orantılı bir kuvvetle çeker. Bunların hepsi çekim sabiti denen evrensel bir sabitle çarpılır.

İki elektrik yükü arasındaki kuvvet de aralarındaki uzaklığın karesi ile ters orantılıdır ama; bunun kütle ile hiçbir ilgisi yoktur. "Evrensel kütle çekimi yasası" nda, kütlenin rolünün birden değiştiğine dikkat edelim. Kütlenin bu yeni görevini iyice belirtmek için, ağırlık katsayısı (çekim sabiti) ortaya çıktığında buna "çekim kütlesi" denmesi uygun görüldü. O halde Newton'un varsayımı şöyle dile getirilebilir: Çekim kütlesi, eylemsizlik kütlesine eşittir.

Bu özelliğin, ister Ay kadar büyük, isterse Ay modülü kadar küçük olsun bir gök cisminin yörüngesinin kütlesinden bağımsız olarak aynı olduğu sonucunu vermesi ilginçtir. Newton, kütle çekimi yasasını çok farklı olaylara uyguladı ve onu bilinen Evrenin tümünü kapsayacak şekilde cesaretle yaygınlatırdı. Merkür'ün yaramazlığı dışında bir sorunla karşılaşmadan 200 yıl kendini korudu.

Kütleçekim alanlarının temel nitelikleri şöyle sıralanabilir:

Kütle çekim kuvvetleri Evrenseldir. Yani Evrendeki her cisim bu kuvvetlerden etkilenir.

Bir kütle çekim alanı mutlaka çekici kuvvetlere neden olur.

Kütleçekim alanları, uzun erimlidir; yani bir cismin etrafında oluşan çekim alanının etkileri zayıflayarak da olsa çok uzak mesafelere kadar uzanabilir.

"Duran iki cisim düşünüldüğünde, bu iki cismin birbirine etki ettirdiği çekim kuvveti; cisimlerin arasındaki uzaklığın karesi ile ters, cisimlerin kütleleri ile doğru orantılıdır." Newton böylece doğanın temel sabitlerinden birini de bulmuştu.

Newton, bir matematik sihirbazıydı. Çünkü çok uzun süre onun dışında kimse diferansiyel denklemlerin içinden çıkamıyordu. Newton'dan 60 - 70 yıl önce, büyük Alman bilim adamı Johannes Kepler (1571-1630), gezegenlerin Güneş çevresindeki hareketlerini yöneten temel yasaları bulmuştu.

Tarihçe kısaca şöyledir: Eski bilginler gezegenlerin gökyüzündeki hareketlerini gözlemleyerek onların Dünya ile birlikte Güneş çevresinde döndüğü sonucuna vardılar. Bu sonuç daha sonra Copernicus tarafından da bağımsız olarak keşfedildi. İnsanlar keşfin daha önce yapıldığını unutmuşlardı. Bundan sonra araştırılacak soru şuydu: Güneş çevresinde tam olarak nasıl dönüyorlardı?

Güneş�in merkez olduğu bir çember üzerinde mi, yoksa başka bir eğri boyunca mı? Hızları neydi? Bunların yanıtlanması daha zun zaman aldı. Copernicus sonrası dönemler, gezegenlerin gerçekten Dünya�yla birlikte Güneş etrafında mı döndükleri, yoksa Dünya�nın Evren!in merkezinde mi olduğu sorularının tartışıldığı dönemlerdi.

Daha sonra Danimarkalı astronom Tycho Brahe (1546-1601), soruyu yanıtlamak için bir yöntem önerdi. Eğer gezegenler çok dikkatle gözlenip gökyüzündeki yerleri tam olarak kaydedilirse, teorilerin durumu belki açıklığa kavuşabilirdi. Bu, modern bilimin anahtarı ve doğanın gerçekten anlaşılmasının başlangıcı oldu: birşeyi gözlelek, ayrıntıları kaydetmek ve bu bilgilerin şu veya bu yorumu çıkarmayı sağlayacak ipuçlarını içerdiğini ummak.

Zengin bir kişi olan Tycho�nun Kopenhag yakınlarında bir adası vardı. Buraya pirinçten yapılmış kocaman daireler yerleştirdi ve özel gözlem yerleri yaptırdı; sonra, geceler boyunca gezegenlerin konumlarını kaydetti. İşte ancak bu tür yorucu ve yoğun çalışmalar yoluyla birşeyler bulunabilir.

Toplanan bütün bilgi Kepler�in eline verildi; o da gezegenlerin Güneş etrafında ne türlü bir hareket yaptığını incelemeye koyuldu. Bunun için deneme yanılma yöntemini uyguladı. Bir ara yanıtı bulduğunu sandı: Gezegenler, Güneş�in merkez olduğu çemberler üzerinde hareket ediyorlardı. Ancak daha sonra bir gezegenin, Mars�ın sekiz dakikalık bir yay kadar sapma yaptığını farketti.

Kepler, Tycho Brahe�nin bu ölçüde bir hata yapamayacağını düşünüp, yanıtın doğru olmadığı sonucuna vardı. Deneylerin çok dikkatli yapılmış olması nedeniyle başka bir yol deneyerek sonunda üç şey keşfetti. İlk olarak, gezegenler Güneş�in odak olduğu elips şeklinde bir yörünge izliyorlardı.

Elips bütün ressamların bildiği bir eğridir: basık bir daire. Çocuklar da onu iyi bilir; iki ucu tesbit edilmiş bir ipe bir halka geçirip halkaya da bir kalem sokulunca elips çizilebileceğini birileri onlara söylemiştir.

İkinci olarak, bir gezegenin Güneş çevresindeki yörüngesi bir elipstir; Güneş de odakların birindedir. Bundan sonra gelen soru şuydu: Güneş�e yaklaştıkça hızı artıyor, uzaklaştıkça yavaşlıyor mu?

Kepler, bunun da yanıtını buldu. Bulduğu yanıt şöyle açıklanabilir: Örneğin üç hafta gibi belirli bir ara içeren iki farklı zamanda gezegenin konumun saptayalım. Sonra, yörüngenin başka bir bölümünde, gezegenin yine üç hafta ara ile iki ayrı konumunu saptayalım ve Güneş�le gezegeni birleştiren doğruları çizelim (bilimsel deyimiyle bunlar yarıçap vektörleridir).

Üç hafta ara ile çizilen iki doğru ve yörenge arasında kalan alan, yörüngenin her bölgesi için aynıdır. Demek ki, gezegen Güneş�e daha yakın olduğu yerlerde daha hızlı hareket ediyor ve uzaklaştıkça aynı alanı taramak için daha yavaş ilerliyor.

Birkaç yıl sonra Kepler, üçüncü bir kural keşfetti. Bu kural yalnızca tek bir gezegenin Güneş çevresindeki hareketiyle ilgili değildi; farklı gezegenler arasında da ilişki kuruyordu. Bu kurala göre, bir gezegenin Güneş çevresinde tam bir devir yapması için gereken zaman, yörüngenin boyutuna bağlıdır; bu zaman da yörüngenin boyutunun küpünün kare kökü ile orantılıdır. Yörüngenin boyutu elipsin en büyük çapıdır.

Kepler�in bu üç yasası şu şekilde özetlenebilir: Yörünge bir elipstir; eşit sürelerde eşit alanlar taranır ve bir devir için geçen süre, boyutun üç bölü ikinci kuvvetiyle orantılıdır; yani boyutun küpünün kareköküyle. Kepler�in bu üç yasası gezegenlerin Güneş çevresindeki hareketlerini tam olarak belirlemektedir.

Bundan sonraki soru şuydu: Gezegenleri Güneş çevresinde hareket ettiren şey nedir? Keplerle aynı dönemde yaşamış bazı kişiler bu soruyu şöyle yanıtlıyorlardı: Melekler kanatlarını çırparak gezegenleri arkadan yörünge boyunca iterler. Daha sonra göreceğiniz gibi bu yanıt gerçeğe pek de uzak sayılmaz. Tek fark, meleklerin farklı yönlerde oturup kanatlarını içeriye doğru çırpıyor olmalarıdır.

Aynı sıralarda Galileo da Dünya�daki sıradan cisimlerin hareket kurallarını inceliyor, bu inceleme sırasında da bazı deneyler yapıyordu. Toplar eğik bir düzlemden aşağı doğru nasıl yuvarlanıyor, sarkaçlar nasıl sallanıyordu?Galileo "eylemsizlik ilkesi" denilen önemli bir kural keşfetti.

Kural şuydu: Düz bir doğru üzerinde belirli bir hızla hareket eden bir cisim, hiçbir etken olmazsa bu doğru boyunca, aynı hızla, sonsuza kadar gitmeye devam edecektir. Bir topu durmamacasına yuvarlamaya çalışmış olan herkes için buna inanmak güç olsa da; bu ideal şartların varlığında, yerdeki sürtünme gibi etkenler olmasa, top gerçekten de düzgün bir hızla sonsuza kadar gidecektir.

Daha sonraki gelişme Newton�un şu soruyu tartışması ile başladı: Eğer cisim düz bir doğru boyunca hareket etmiyorsa ne olur? Buna verdiği yanıt da şu oldu: Hızı herhangi bir şekilde değiştirmek için kuvvet uygulamak gerekir. Örneğin, bir top hareket ettiği yönde itilirse hızı artar.

Eğer gidiş yönü değişmişse kuvvet yandan uygulanması gerekir. Kuvvet iki etkinin çarpımı ile ölçülebilir.Ufak bir zaman aralığında hzının ne kadar değiştiği, "ivme" olarak tanımlanır. Bunu cismin kütlesi veya eylemsizlik katsayısı ile çarparsık kuvveti buluruz. Bu ise ölçülebilir.

Örneğin bir ipin ucuna bağlanmış bir taşı başımızın üzerinde döndürürsek, ipi çekmemiz grektiğini farkederiz. Nedeni şudur: Taşın hızı sabit olmakla birlikte, bir çember çizerek döndüğü için yönü değişmekte, bu nedenle de taşı sürekli içeriye doğru çekin bir kuvvet gerekmektedir; bu kuvvet de kütle ile orantılıdır.

Şimdi iki ayrı taş alıp önce birini sonra diğerini döndürelim ve ikinci taş için gereken kuvvveti ölçelim. Bu kuvvet, birinciden, kütlelerinin farklılığıyla orantılı olarak daha büyük olacaktır. Hızı değiştirmek için gereken kuvveti saptamak, kütleyi ölçmek için bir yönetem oluşturur.

Newton, bundan bir başka sonuç çıkardı. Onu da basit bir örenkle açıklayalım: Eğer bir gezegen Güneş çevresinde bir çember boyunca gidiyorsa, onun yana doğru, teğet boyunca gitmesi içi kuvvete gerek yoktur. Eğer herhangi bir kuvvet olmasaydı başını alır giderdi.

Ancak gezegen bunu yapmıyorr;kuvvetin olmaması durumunda bir süre sonra gitmiş olcaeğı ta uzaklarda değil, Güneş�e yakın bir yerde bulunuyor. Başka bir deyişle,hızı ve hareketi Güneş�e doğru sapıyor; yani meleklerin, kanatlarını sürekli Güneş�e doğru çarpmaları gerekiyor.

Bir gezegenin düz bir doğru boyunca hareket etmesinin bilinen bir nedeni yoktur. Nesnelerin sonsuza dek gitmeyi sürdürmelerinin nedeni bulunamamıştır. Eylemsizlik Kuramı'nın da bilinen bir kökeni yoktur. Melekler gerçek olmasa da harektin süregittiği bir gerçektir.

Ancak,düşme olgusu için kuvvete gereksinim vardır ve kuvvetin kökeninin Güneş�e doğru olduğu da anlaşılmıştır. Newton, eşit sürelerde eşit alan taranması kuramının, hızdaki bütün değişmelerin Güneş yönünde olduğu savının doğrudan bir sonucu olduğunu; bunun eliptik yörünge için de geçerli olduğunu göstermeyi başardı.

Bu yasayı kullanarak Newton, kuvvetin Güneş yönünde olduğunu ve eğer gezegenlerin periyotlarının Güneş�ten olan uzaklıklarıyla nasıl değiştiği bilinirse, bu kuvvetin uzaklık ile nasıl değiştiğinin de bulunabileceğini gösterdi ve kuvvetin, uzaklığın karesi ile ters orantılı olduğunu saptadı.

Buraya kadar Newton, pek bir şey söylemiş sayılmaz; çünkü yalnızca kepler�in ifade ettiği iki şeyi farklı biçimde dile getirmiş oluyordu. birincisi, kuvvetin Güneş yönünde olduğunu söylemekle; ikinci de kuvvetin, uzaklığın karesi ile ters orantılı olduğunu söylemekle aynı şeydi.

İnsanlar Jüpiter�in uydularının Jüpiter çevresinde nasıl hareket ettiklerini teleskopla görmüşlerdi. bu hareket tıpkı Güneş Sistemi'nde olduğu gibiydi; sanik uydular Jüpiter�e doğru çekiliyorlardı. Ay da Dünya�nın çekimindedir; Dünya�nın çevresinde döner ve Dünya�ya doğru çekilir. Sanki her şeyin birbirinin çekimi altınrdaymış gibi görünmesi bir sonraki kuramı; genelleme yapacak olursak her cismin her cismi çektiği yolunda olması sonucunu getirdi.

Eğer bu doğru ise, Güneş'in gezEgenleri çektiği gibi dünya da Ay�ı kendisine doğru çekiyordu. Dünya�nın cisimleri çektiği bilinen bir şeydi (hepimiz havada uçmak isetesek de iskemlemizde sık sıkı oturduğumuzu biliyoruz). Yeryüzü'ndeki çekim, yerçekimi olgusu olarak ilyi bilrdiğimiz bir şeydir.

Newton, Ay�ı yörüngede tutan çekimin, nesneleri Dünya�ya çeken kuvvetle aynı şey olabileceğini düşündü. Daha sonra Newton birçok yeni şey ortaya çıkardı. Çekim Yasası'nın ters kare olması durumunda yörüngenin şeklinin ne olacağını hesapladı ve bunu bir elips olarak buldu.

Ayrıca birçok farklı olaya da açıklama getirildi. Bunlardan biri gel-git olayıydı. Gel-git, Dünya ve denizlerin Ay tarafından çekilmesinden kaynaklanıyordu. Bu, daha önceleri de düşünülmüştü; ancak ortada bir pürüz vardı: Olay, Ay�ın denizleri çekmesinden kaynaklanıyorsa Ay�ın bulunduğu taraftaki sular yükselecek, o zaman günde ancak bir gel-git olacaktı.

Gerçekte ise yaklaşık oniki saatte bir, yani günde iki gel-git olduğunu biliyoruz. Farklı bir sonuca varan bir düşünce ekolü daha vardı. Buna göre de Dünya, Ay tarafından suyun dışına çekiliyordu. Gerçekte ne olup bittiğini ilk farkeden Newton oldu: Ay�ın aynı uzaklıktaki kara ve denizler üzerindeki çekim kuvveti aynıydı.

Gerçekte Dünya da Ay gibi bir çember boyunca hareket eder. Ay�ın Dünya�ya uyguladığı kuvvet dengelenmiştir; ama dengeleyici nedir? Ay�ın Dünya�nın çekim kuvvetini dengelemek için dairesel bir yörünge üzerinde hareket etmesi gibi, Dünya da dairesel bir yörünge üzerinde hareket etmektedir. Bu dairenin merkezi Dünya�nın içinde bir noktadadır ve Ay�ın kuvvetini dengelemek için darisel bir hareket yapmaktadır.

İkisinin de ortak bir merkez etrafında dönmesiyle, Dünya açısından kuvvetler dengelenmiş oluyor; ancak bir yöndeki su öteki yöndekine göre daha çok çekildiği için su iki yanda da kabarıyor. Herneyse, gel-git olayı ve günde iki kez gerçekleşmesinin nedeni böylece açıklanmış oluyordu. Bu arada açıklanan daha birçok şey vardı: Dünya, her şey içe doğru çekildiği için yuvarlaktı; kendi ekseni etrafında döndüğü için de yuvarlak değildi. Dış bölgeler biraz uzaga itilmişlerdi ve denge oluşuyordu.

Bilim ilerleyip daha hassas ölçümler yapıldıkça "Newton Yasası" da daha zorlu sınamalarla karşılaştı. Bunlardan ilki Jüpiter'in gezegenleriyle ilgiliydi. Uzun süre dikkatle yapılmış gözlemlerle hareketlerinin Newton Yasası'na uyumu saptanabilirdi. Ancak sonuç bunun doğuru olmadığını gösteriyordu.

Jüpiter�in gezegenleri, Newton Yasası ile hesaplanmış zamana göre, bazen sekiz dakika ileri, bazen sekiz dakika geri olan bir fark oluşturuyorlardı. Bu fark Jüpiter�in Dünya�ya yakın olduğu zamanlarda ileri, uzak olduğu zamanlarda ise geriye doğruydu. Bu tuhaf bir durumdu.

Yerçekimi yasasına güveni tam olan Danimarkalı astronom Roemer (1644-1710), bu durumda ışığın Jüpiter�in gezegenlerinden Dünya�ya gelmesinin zaman aldığı gibi ilginç bir sonuç çıkardı Ayrıca bu gezegenlere baktığımız zaman gördüğümüz şey onların o andaki durumu değil, ışığın bize gelmesi için geçen zamandan önceki durumuydu.

Jüpiter bize yakın olduğunda ışık daha kısa sürede, uzak olduğunda ise daha uzun sürede geliyordu. Bu neden Roemer�in gözlemleri zaman farkı yönünden şu kadar erken, bu kadar geç olmalarına görüe düzeltilmesi gerekiyordu. Bu yolla ışğın hızını ölçmeyi başarmış, ışığın bir anda yayılan birşey olmadığını da ilk kez göstermiş oldu.

Eğer bir yasa doğru ise başka bir yasanın bulunmasına da yol açabilir. Eğer bir yasaya güveniyorsak, ona ters bir şeyin ortaya çıkması bizi başka bir olguya doğru yöneltir. Yerçekimi yasasını bilmeseydik Jüpiter�in gezegenlerinden ne bekleyeceğimizi de bilemezdik; ışığın hızını ölçmek ise çok daha sonralara atılmış olurdu.

Bu süreç, adeta bir keşifler çağına yol açtı. Her yeni keşif, bir yenisine daha yol açan araçları da beraberinde getirir. 400 yıldan beri süregelen ve büyük bir hızla sürmele devam edecek olan bu çağ, işte bu şekilde başlamıştır.

Daha sonraları ortaya yeni bir sorun çıktı. Newton Yasası'na göre gezegenler yalnızca Güneş�in çekiminde değildi; birbirlerini de biraz çekiyorlardı. Öyleyse yörüngeleri eliptik olmamalıydı. Gerçi bu küçük bir çekimdi; ancak "küçük" olan da önem taşıyabilir ve hareketi etkiler.

Jüpiter, Satürn ve Uranüs�ün büyük gezegenler oldukları biliniyordu. Herbirinin diğerleri üzerindeki çekimi sonucu, yörüngelerinin Kepler�in kusursuz elipslerinden ne ölçüde farklı olduğunu saptayacak hesaplar ve gözlemler yapıldı. Sonuçta Jüpiter ve Satürn�ün hesaplamalara uygun hareket ettikleri; Uranüs�ün ise �tuhaf� davrandığı ortaya çıktı.

Adams ve Leverrier adındaki iki astronom, birbirinden bağımsız olarak yaptıkları çalışmalar sonucunda neredeyse aynı anda, Uranüs�ün hareketlerinin görünmyen bir gezegenden etkilendiğini iler sürdüler. Herbiri kendi gözlemevine "teleskopunuzu çevirin ve orayı gözleyin. yeni bir gezgen göreceksiniz" şeklinde birer mektup yolladılar.

Gözlemevlerinden birinin tepkisi "Saçma! Eline kalem kağıt alıp oturan biri, bize gezegen bulmak için nereye bakacağımızı söylüyor" şeklindeydi. Diğer gözlemevinin yöntemi farklıydı ve Neptün�ü buldu.

20. yy�ın başlarında Merkür�ün hareketinin tam da "doğru" olmadığı anlaşıldı. Einstein, Newton Yasalarının biraz hatalı olduğunu ve değiştirilmeleri gerektiğini gösterinceye dek bu durum hayli sıkıntıya yol açtı. Şimdi de bu yasanın kapsamının genişliği sorusu ortaya çıkıyor.

Yasa, Güneş Sistemi dışında da geçerli midir? Galaksimizi birarada tutan şey, yıldızlar arasındaki çekim kuvvetidir. Dünya'dan Güneş'e olan uzaklık sekiz ışık dakikası olduğu halde, galaksilerin uzunlukları 50.000-100.000 ışık yılıdır. Ancak çekim kuvvetinin bu büyük yıldız yığınlarında, bu ölçekteki uzaklıklarda bile geçerli olduğundan kuşkulanmak için bir neden yoktur.

Çekim kuvvetinin varolduğunu doğrudan kanıtlayabileceğimiz uzaklık bu kadar; yani Evren'in büyüklüğünün onda biri veya yüzde biri kadar uzaklıktır. Buna göre, gazetelerde birşeylerin Dünya'nın çekim kuvveti dışına çıktığına ilişkin haberler okusanız da, Dünya'daki yerçekiminin kesin bir sonu yoktur.

Bu yerçekimi, uzaklığın karesi ile ters orantılı olarak giderek zayıflar; uzaklık iki katın çıkınca o da dört kat zayıflar ve böylece diğer yıldızların güçlü alanlarının karmaşasında kaybolur. Çevresindeki yıldızlarla birlikte başka yıldızları çekerek galaksi oluşturur; bu galaksi de diğer galaksileri çekip bir galaksiler kümesi oluşturur. Böylece Dünya'nın çekim alanı hiç bitmez; ancak belirli ve düzenli bir şekilde zayıflayarak belki de Evren'in sınırlarına kadar gider.

Çekim Yasası, diğer yasaların çoğundan farklıdır. Evren'in ekonomisi ve mekanizması için çok önemli olduğu açıktır ve Evren yönünden birçok pratik uygulaması da vardır. Ancak, diğer fizik yasalarından farklı tipik bir özelliğe sahiptir: bilinmesi pek az pratik yarar sağlar.

Bir galaksiyi oluşturan birçok yıldız değil, sadece gazdır. Belki de her şeyi başlatan, bir şok dalgası olmuştur. Bundan sonraki olaylar, çekim kuvvetinin etkisiyle gazın gittikçe sıklaşarak toplanması, büyük gaz ve toz yığınlarının ve topların oluşmasıdır. Bunlar içeriye doğru düşerken, düşmenin yol açtığı ısıyla yanar ve yıldız haline gelirler.

Böylece yıldızlar, çekim etkisiyle gazın sıkışıp biraraya gelmesiyle ortaya çıkıyorlar. Yıldızlar bazen patladıklarında toz ve gaz püskürtür, bu toz ve gazlar tekrar biraraya toplanıp yeni yıldızlar yaratırlar.

__________________

.
.
.
.






.
.
.


why so serious?
Ceysu isimli Üye şimdilik offline konumundadır Alıntı ile Cevapla
Alt 28.09.2012, 03:40   #30 (permalink)
why so serious?

Kullanıcıların profil bilgileri misafirlere kapatılmıştır.
Standart Cevap: Genel Bilgiler

Neden Yumurtlamıyoruz?


Kuşlar, yumurtalarını yuvalarına bırakır ve sonra onlar üzerinde kuluçkaya yatarlar. Memelilerse, yavrularını bedenleri içinde büyütürler, ister inanın, ister inanmayın, bu ayrıcalığımızı bir virüse borçlu olabiliriz.

Zamanda geriye doğru gittiğinizi ve annenizin dölyatağında el ve ayak parmaklarınızın oluşmaya başladığı bir döneme döndüğünüzü hayal edin. Etrafınıza şöyle bir baktığınızda gördüğünüz şeylerden korkabilirdiniz. Siz orada dış dünyanın binbir kirinden korunduğunuzu düşünürken bir iribaşı andıran vücudunuz etrafında AİDS virüsünü andıran çirkin suratlı virüslerin dans ettiğini görürdünüz.

Hücrelerinizden milyarlarcası, başkaldırmış gibi, durmadan bu asalakları sentezleyip dışarı pompalarlardı. Plasenta içine bir bakınca korkunuz daha da artardı. Plasentanın içinde virüslerin kaynaştığını ve bu minik askerlerden oluşmuş alayların çevrelerini istila ettiklerini görürdünüz.

Böyle bir enfeksiyondan nasıl olup da sağ kurtulduğunuza herhalde şaşıp kalırdınız. Oysa herhangi bir embriyolog, size bunun bir hastalık değil, her gebelikte görülen normal bir durum olduğunu açıklardı. Bu HIV (AİDS virüsü) taklitçilerine ERV (endojenretrovirüs) deniyor.

ERV'ler her memelinin DNA'sınca kodlanırlar. ERV'ler milyonlarca yıl önce memeli hücrelerini istila ettiler ve bu çevre o kadar hoşlarına gitti ki kalmaya karar verdiler. Daha da şaşırtıcı olan nokta şudur: Bazı araştırıcılara göre ERV'ler memelilerin evriminde ve özellikle bu evrimin en önemli aşaması olan canlı yavru doğurulmasında, rol oynamışlardır.

ERV'lerin memelilere özgü bir organ olan plasentanın oluşmasında ve dölütün hastalık mikroplarından ve annenin bağışıklık sisteminden korunmasında rol oynadıkları düşünülüyor. Her ne kadar araştırmacıların bazıları kabul etmiyorsa da diğer araştırmacılara göre ERV'ler olmasaydı kadınlar halâ yumurtluyor olacaklardı.

Yavrularınızı yumurta yerine vücudunuzun içinde olgunlaştırmanızın üstünlüğü, memelilerin Yeryüzü'ndeki baş döndürücü başarısından bellidir. Memeliler kutuplardan tropiklere, denizde ve havada her ekolojik yuvayı işgal etmiş bulunuyor. Bir grup memeli, yarasalar, havayı seçmiş. Keseli memeliler (kanguru vb.) yavrularını karınlarının önündeki bir kese içinde büyütüyorlar. Ördek gagalı platipus ve dikenli karıncayiyen, memeli olmalarına rağmen yumurtluyorlar. Fakat memelilerin hemen hepsi gelişmesini tamamlamış canlı yavru doğuruyor.

Evrim sırasında memelilerin kuşlara, sürüngenlere ve balıklara üstünlüğünü iki öğe sağladı: canlı yavru doğurmak ve sıcak kanlı oluş. Böylece dinozorların yokoluşundan doğan ekolojik boşluğu memeliler doldurdu.

Bir yumurta yerine dölyatağı içinde büyüyen memeli yavrusu şu bakımlardan üstündür: Her memeli yavrusunun, diğer sınıflara göre büyük olan beyni bol enerji ve oksijen ister ve yavru o oranda fazla atık oluşturur; annenin kan dolaşımı yavrunun bütün bu gereksinimlerini, yumurtadan çok daha iyi karşılar.

Dölyatağı içindeki dölütün büyük sorunlarından biri, annenin bağışıklık sisteminin dölütü reddetmeye (öldürmeye) çalışmasıdır. Bu nasıl olabilir diyeceksiniz belki. Çok basit: Dölütün kromozomlarının yarısı anadan, yarısı da babadan gelir; annenin bağışıklık sistemi doğal olarak dölüte babadan geçmiş antijenleri yabancı ilan eder, onlarla savaşır ve onları yoketmeye uğraşır.

Plasenta, anneye yarı yarıya yabancı oluşu yetmiyormuş gibi, dölyatağı çeperini bir tümör gibi istila eder ve hatta anne vücudunun uzak noktalarına genetik açıdan yabancı hücrelerden oluşmuş kümeler gönderir. Ne harika bir doğa olayıdır ki yine de dölüt, bu kendisine yarı yarıya düşman çevre içerisinde hayatta kalmayı başarır.

__________________

.
.
.
.






.
.
.


why so serious?
Ceysu isimli Üye şimdilik offline konumundadır Alıntı ile Cevapla
Cevapla

Yukarı'daki Konuyu Aşağıdaki Sosyal Ağlarda Paylaşabilirsiniz.


Yetkileriniz
Konu Açma Yetkiniz Yok
Cevap Yazma Yetkiniz Yok
Eklenti Yükleme Yetkiniz Yok
Mesajınızı Değiştirme Yetkiniz Yok

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-Kodu Kapalı
Trackbacks are Kapalı
Pingbacks are Açık
Refbacks are Açık


Forum hakkında Kullanılan sistem hakkında
Forumaski paylaşım sitesidir.Bu nedenle yazılı, görsel ve diğer materyaller sitemize kayıtlı üyelerimiz tarafından kontrol edilmeksizin eklenmektedir.Bu nedenden ötürü doğabilecek yasal sorumluluklar yazan kullanıcılara aittir.Sitemiz hak sahiplerinin şikayetleri doğrultusunda yazılı, görsel ve diğer materyalleri 48 saat içerisinde sitemizden kaldırmaktadır. Bildirimlerinizi bu linkten bize yapabilirsiniz.

Telif Hakları vBulletin® Copyright ©2000 - 2016, ve Jelsoft Enterprises Ltd.'e Aittir.
SEO by vBSEO 3.6.0 PL2 ©2011, Crawlability, Inc.
yetişkin sohbet chatkamerali.net

Saat: 11:58