Forum Aski - Türkiye'nin En Eğlenceli Forumu
 

Go Back   Forum Aski - Türkiye'nin En Eğlenceli Forumu > Eğitim - Öğretim > Dersler > Matematik
facebook bağlan


Matematik Bölme İşlemi – Bölen Kalan İlişkisi

Matematik kategorisinde açılmış olan Matematik Bölme İşlemi – Bölen Kalan İlişkisi konusu , Matematik Bölme İşlemi – Bölen Kalan İlişkisi Bölme işlemi, doğal sayılarda bölme kuralı, bölen kalan ilişkisi ve bölünebilme kuralları kpss matematik konuları içinde yer almaktadır. Bu bölümde bölme işlemi içinde ...


Yeni Konu aç  Cevapla
 
LinkBack Seçenekler Arama Stil
Alt 22.11.2014, 19:22   #1 (permalink)

Kullanıcıların profil bilgileri misafirlere kapatılmıştır.
Standart Matematik Bölme İşlemi – Bölen Kalan İlişkisi



Matematik Bölme İşlemi – Bölen Kalan İlişkisi



Bölme işlemi, doğal sayılarda bölme kuralı, bölen kalan ilişkisi ve bölünebilme kuralları kpss matematik konuları içinde yer almaktadır. Bu bölümde bölme işlemi içinde yer alan doğal sayılarda bölme kuralı ve bölen kalan ilişkisi konularını irdeleyeceğiz. Kpss sorularında temel matematik bölümünde çıkan bölme işlemi ile ilgili sorular hem bu konuyu hem de matematiğin temeli olduğu için diğer matematik konularını doğrudan etkilemektedir.Doğal Sayılarda Bölme İşlemi

Kpss matematik konuları içindeki doğal sayılarda bölme işlemi şu şekilde aktarılmaktadır:

A, B, C ve K birer doğal sayı olma üzere ve B 0’dan farklı olmak üzere;
A: Bölünen B: Bölen C: Bölüm K: Kalan olarak adlandırılır.

Kpss matematik konusu içinde yer alan doğal sayılarda bölme işlemi 3 önemli özelliği barındırır.
  • A= B.C + K ‘dır. Bu önemli kuralı asla unutmayalım. Çünkü bu kural kpss bölme sorularında karşımıza en sık çıkan kuraldır.
  • Bir bölme işleminde kalan bölenden daima küçük olmak zorundadır. Bölme işleminde kalan sıfır olabilir ki buna tam bölünebilme denir. Ancak kalan negatif olmaz.

  • Bölme işleminde kalan bölümden küçük ise bölen ile bölüm yer değiştirebilmektedir.
Yani ise B ile C yer değiştirse dahi kalan değişmez.
Bölen Kalan İlişkisi

Kpss genel yetenek matematik sorularında karşımıza 2 tane sayı verilir. Bu sayılar a=2568 ve b=1453 şeklinde iki sayı olabilir. Sayılar verildikten sonra bize ”Bu iki sayının çarpımının 9 ile bölümünden kalan nedir?” tarzında sorular sorulmaktadır. Böyle durumlarda önce bu iki sayıyı çarpıp sonra 9a bölmeye gerek yoktur.
Burada sonucu bulmak için her iki sayının 9 ile bölümünden kalanlar ile de gerekli işlem yapılarak sonuca ulaşmamız mümkündür. Şöyle ki;
a=2568/9 işleminde kalan 3
b=1453/9 işleminde kalan 4
buradan a.b=4.3 ile 12 sonucunu elde ederiz. 12/9 işlemini gerçekleştirdiğimizde de kalan 3 olarak karşımıza çıkar.

Kısaca bize verilen çarpılacak olan sayıların kalanlarını birbirleriyle çarptığımızda da aynı sonuca ulaşmaktayız.

DeLi.Cocuk isimli Üye şimdilik offline konumundadır Alıntı ile Cevapla
Cevapla

Yukarı'daki Konuyu Aşağıdaki Sosyal Ağlarda Paylaşabilirsiniz.


(Tümünü Görüntüle Konuyu Görüntüleyen Üyeler: 1
DeLi.Cocuk
Seçenekler Arama
Stil

Yetkileriniz
Konu Açma Yetkiniz Yok
Cevap Yazma Yetkiniz Yok
Eklenti Yükleme Yetkiniz Yok
Mesajınızı Değiştirme Yetkiniz Yok

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-Kodu Kapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık


Forum hakkında Kullanılan sistem hakkında
Forumaski paylaşım sitesidir.Bu nedenle yazılı, görsel ve diğer materyaller sitemize kayıtlı üyelerimiz tarafından kontrol edilmeksizin eklenmektedir.Bu nedenden ötürü doğabilecek yasal sorumluluklar yazan kullanıcılara aittir.Sitemiz hak sahiplerinin şikayetleri doğrultusunda yazılı, görsel ve diğer materyalleri 48 saat içerisinde sitemizden kaldırmaktadır. Bildirimlerinizi bu linkten bize yapabilirsiniz.

Telif Hakları vBulletin® Copyright ©2000 - 2016, ve Jelsoft Enterprises Ltd.'e Aittir.
SEO by vBSEO 3.6.0 PL2 ©2011, Crawlability, Inc.

Saat: 14:24