Forum Aski - Türkiye'nin En Eğlenceli Forumu
 

Go Back   Forum Aski - Türkiye'nin En Eğlenceli Forumu > Eğitim - Öğretim > Dersler > Matematik
facebook bağlan


Matematiğin Temelleri

Matematik kategorisinde açılmış olan Matematiğin Temelleri konusu , Matematiğin temelleri "Matematiğin temelleri" olarak bilinen matematik dalı matematiğin tümü için geçerli olan en temel kavramları ve mantıksal yapıları inceler. Sayı, küme, fonksiyon, matematiksel tanıt, matematiksel tanım, matematiksel aksiyom, algoritma ...


Yeni Konu aç  Cevapla
 
LinkBack Seçenekler Arama Stil
Alt 28.12.2012, 21:45   #1 (permalink)
Root Administrator

Kullanıcıların profil bilgileri misafirlere kapatılmıştır.
Standart Matematiğin Temelleri



Matematiğin temelleri



"Matematiğin temelleri" olarak bilinen matematik dalı matematiğin tümü için geçerli olan en temel kavramları ve mantıksal yapıları inceler. Sayı, küme, fonksiyon, matematiksel tanıt, matematiksel tanım, matematiksel aksiyom, algoritma vb. gibi kavramlar Matematiksel mantık, Aksiyomatik Küme Teorisi, Tanıtlama Teorisi, Model Teorisi, Hesaplama teorisi, Kategori Teorisi gibi yine matematiğim temelleri olarak anılan alanlarda incelenir. Bununla birlikte matematiğin temellerinin araştırılması matematik felsefesinin ana konularından biridir. Bu daldaki can alıcı soru matematiksel önermelerin hangi nihai esaslara göre "doğru" ya da "gerçek" kabul edilebileceğidir.
Geçerli baskın matematiksel paradigma aksiyomatik küme kuramı ve formel mantık üzerine kurulmuştur. Günümüzde neredeyse bütün matematik teoremleri küme kuramının teoremleri şeklinde ifade edilebilmektedir. Bu bakış açısına göre matematiksel bir önermenin doğruluğu (gerçekliği) önermenin formel mantık yoluyla küme kuramının aksiyomlarından türetilebildiği iddiasından başka bir şey değildir. Bununla birlikte bu formel yaklaşım bazı konuları aydınlatmakta yeterisz kalır: Neden kullandığımız aksiyomlar yerine başka aksiyomlar kullanmayalım? Neden kullandığımız mantık kuralları yerine başka mantık kuralları kullanmayalım? Neden "doğru" matematiksel önermeler (örneğin aritmetik yasaları) fiziksel dünyada doğruymuş gibi görünür? Bu sorunsal Eugene Wigner tarafından (1960) "en:The unreasonable effectiveness of mathematics in the physical sciences" (Matematiğin doğa bilimlerindeki anlaşılmaz etkililiği) adlı çalışmasında ayrıntılı olarak işlenmiştir.
Yukarıda belirtilen formel gerçeklik nosyonunun hiçbir manası da olmayabilir. Başka bir deyişle tüm önermelerin, hatta paradoksların, küme kuramı aksiyomlarından türetilmesi olanaklı olabilir. Bunun ötesinde Gödel'in ikinci teoreminin sonucu olarak bunun böyle olmadığından hiçbir zaman emin olamayız.
Matematiksel gerçekçilikte (Platonizm olarak da bilinir), insanlardan bağımsız olan bir matematiksel nesneler dünyasının var olduğu öne sürülür. Matematiksel nesnelere ilişkin doğrular insanlar tarafından keşfedilir. Bu görüşe göre doğanın yasaları ve matematiğim yasaları benzer bir statüdedir ve matematik yasaların doğadaki etkililiğinin mantıksız olduğu savı geçerliliğini yitirir. Aksiyomlarımız değil, matematiksel nesnelerin elle tutulabilir gerçek dünyası matematiğin temellerini oluşturur. Bu noktada doğal olarak beliren soru, (Bu matematiksel dünyaya nasıl erişlebilir?) sorusudur.
Matematik felsefesinde bazı modern kuramlar, özgün anlamıyla, temellerin var olduğunu reddeder. Bazıları matematiksel uygulama üzerinde yoğunlaşır ve matematikçilerin bir sosyal grup olarak somut çalışmalarını betimlemeyi ve çözümlemeyi amaçlar. Yine başkaları, matematiğin 'gerçek dünyaya' uygulandığında güvenilirliği konusunda insanın bilişseliğine yoğunlaşarak matematiği bilişsel bilim olarak oluşturmaya çalışır. Bu kuramlarda temeller yalnızca insan düşüncesinde bulunur ve 'nesnel' dış yapıda yoktur. Bu konu hala çözüme kavuşturulamamıştır.

__________________
[Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL][Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL][Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL][Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL][Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL][Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL][Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL][Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL][Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL][Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL][Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL][Link'i Görebilmeniz İçin Kayıt Olunuz.! Kayıt OL]
Jaqen isimli Üye şuanda  online konumundadır Alıntı ile Cevapla
Cevapla

Yukarı'daki Konuyu Aşağıdaki Sosyal Ağlarda Paylaşabilirsiniz.


(Tümünü Görüntüle Konuyu Görüntüleyen Üyeler: 1
KeNJiBaTuSaY
Seçenekler Arama
Stil

Yetkileriniz
Konu Açma Yetkiniz Yok
Cevap Yazma Yetkiniz Yok
Eklenti Yükleme Yetkiniz Yok
Mesajınızı Değiştirme Yetkiniz Yok

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-Kodu Kapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık


Forum hakkında Kullanılan sistem hakkında
Forumaski paylaşım sitesidir.Bu nedenle yazılı, görsel ve diğer materyaller sitemize kayıtlı üyelerimiz tarafından kontrol edilmeksizin eklenmektedir.Bu nedenden ötürü doğabilecek yasal sorumluluklar yazan kullanıcılara aittir.Sitemiz hak sahiplerinin şikayetleri doğrultusunda yazılı, görsel ve diğer materyalleri 48 saat içerisinde sitemizden kaldırmaktadır. Bildirimlerinizi bu linkten bize yapabilirsiniz.

Telif Hakları vBulletin® Copyright ©2000 - 2016, ve Jelsoft Enterprises Ltd.'e Aittir.
SEO by vBSEO 3.6.0 PL2 ©2011, Crawlability, Inc.

Saat: 03:13